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Abstract 

The notion of a Haar null set introduced by Christensen in 1973 and 
reintroduced in 1992 in the context of dynamical systems by Hunt, Sauer and 
Yorke, has been used, in the last two decades, in studying exceptional sets in 
diverse areas, including analysis, dynamic systems, group theory, and 
descriptive set theory. In the present paper, the notion of “prevalence” is used in 
studying the properties of some infinite sample statistics and in explaining why 
the null hypothesis is sometimes rejected for “almost every” infinite sample by 
some hypothesis testing of maximal reliability. To confirm that the conjectures 
of Jum Nunnally [17] and Jacob Cohen [5] fail for infinite samples, examples of 
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the so called objective and strong objective infinite sample well-founded 
estimate of a useful signal in the linear one-dimensional stochastic model are 
constructed. 

1. Introduction 

Criticism of statistical Hypothesis Testing can be found in [15], [18], 
[4], [8], [12], [14] citing 300-400 primary references. Much of 
philosophical criticism of Hypothesis Testing is based on a general 
opinion that the theory of mathematical statistics and the results of 
testing turn out inconsistent in many situations. Different reasonable 
statistical methods lead to inconsistent decisions in many expensive 
experiments, which causes the feeling of alarm in mathematicians and 
statisticians. It would be practically impossible to explain all the 
paradoxes which underlie the existence of a big gap between theory and 
practice. The present paper skips the detailed consideration of the issues 
which give grounds for such criticism. The attention is focused on a 
certain confusion, which is noticed in the works of Jum Nunnally [17] and 
Jacob Cohen [5]. In [5], Jacob Cohen says: “... don’t look for a magic 
alternative to NHST [null hypothesis significance testing] ... It does not 
exist.” In [17], Jum Nunnally conjectured: “If the decisions are based on 
convention they are termed arbitrary or mindless, while those not so based 
may be termed subjective. To minimize type II errors, large samples are 
recommended. In psychology, practically all null hypotheses are claimed 
to be false for sufficiently large samples so ... it is usually nonsensical to 
perform an experiment with the sole aim of rejecting the null hypothesis”. 

Therefore, there naturally arises a question whether the concept of a 
theory of statistical decisions can be introduced for infinite samples and 
whether the conjectures made by Jacob Cohen and Jum Nunnally for 
sufficiently large samples are also valid for infinite samples. To confirm 
that these conjectures no always hold in the case of infinite samples, for a 
linear one-dimensional stochastic system, we consider a certain 
Hypothesis Testing for infinite samples, such that the sum of errors of 
types I and II is equal to zero (we describe such tests as tests of maximal 
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reliability). Furthermore, we explain why the null hypothesis is claimed 
to be false for “almost every” [9] infinite sample by using well known 
infinite sample well-founded estimates. Using the result of the paper 
[19], we construct an example of such an infinite sample well-founded 
estimate for which there does not exist a null hypothesis, which is 
accepted or rejected for “almost every” infinite sample. This example 
motivates to introduce a new class of infinite sample objective well-
founded estimates of a useful signal. Notice that for a hypothesis testing 
equipped with an objective estimate the above mentioned conjectures of 
Jum Nunnally [17] and Jacob Cohen [5] fail. 

To begin with, notice that in many cases even the information that 
some phenomenon occurs with probability 1 can be quite poor and we 
may regard this as an essential reason for all inconsistent statistical 
decisions. Indeed, let X be an infinite-dimensional topological vector 
space. Let P be any sentence formulated for elements in X and let µ  be 

any probability Borel measure on X. Let us discuss what information the 
following sentence implies: 

almost-µ“  every element of X satisfies the property P.” 

If X is separable, then an arbitrary non-zero finite-σ  Borel measure 

defined on X is concentrated on the union of countable compact subsets 
( ) N∈kkF  in B (cf. [11]) and for arbitrary ,N∈k  there exists a vector 

,Xv ∈k  which spans the line ,kL  such that every translation of kL  

meets kF  at one point at most. Thus, the support of µ  can be assumed to 

be the union of a countable family of “surfaces”. Hence, the information 
described by the above sentence can, in general, be very poor. That is 
why, it is not advisable to study the behaviour of various general systems 
defined in infinite-dimensional separable topological vector spaces in 
terms of some partial finite-σ  Borel measure (for example, a Gaussian 

measure concentrated on a poor set) and we need to extend the measure 
theoretic terms to the terms “measure zero” and “almost every”. This 
phenomenon was originally noticed by Christensen [2] and, more 
recently, by Hunt et al. [9]; Mycielski [16]; Dougherty [6] and other 
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mathematicians. Like the concept of “Lebesgue almost every” on finite-
dimensional spaces, their notion of “prevalence” is translation invariant. 
Instead of using a specific measure on the entire space, they define 
prevalence in terms of the class of all probability measures with compact 
support. Prevalence is a more appropriate condition than the topological 
concepts of “open and dense” or “generic” when one desires a probabilistic 
result on the likelihood of a given property on a function space. 

The aims of the present paper are: 

● to apply the “almost every” approach to the study the properties of 
infinite sample statistics; 

● to introduce concepts of “subjective” and “objective” infinite sample 
well-founded estimates of a useful signal in a linear one-dimensional 
stochastic model; 

● to show that each infinite sample well-founded estimate of a useful 
signal in a linear one-dimensional stochastic model is “subjective” or 
“objective”; 

● to show that the conjectures of Jum Nunnally [17] and Jacob Cohen 
[5] hold for “subjective” infinite sample well-founded estimates; 

● to show that the conjectures of Jum Nunnally [17] and Jacob Cohen 
[5] fail for “objective” infinite sample well-founded estimates. 

The rest of the paper is the following: 

Section 2 presents some auxiliary notions and facts from functional 
analysis and measure theory. 

Section 3 considers well-founded estimates of a useful signal in the 
linear one-dimensional stochastic model. 

Section 4 contains several examples of hypothesis testing of maximal 
reliability for a linear one-dimensional stochastic model and an 
explanation why the null hypothesis is rejected for “almost every” infinite 
sample by some hypothesis testing of maximal reliability. 
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Section 5 presents the partition of the class of all infinite sample 
well-founded estimates into pairwise-disjoint two classes one of them 
consists only subjective and another of them consists only objective 
estimates. Here is given an explanation why the application of objective 
statistics is more appropriate than an application of subjective ones in 
the statistical decision theory. 

2. Auxiliary Notions and Facts from Functional  
Analysis and Measure Theory 

Let V  be a complete metric linear space, by which we mean a vector 
space (real or complex) with a complete metric for which the operations of 
addition and scalar multiplication are continuous. When we speak of a 
measure on ,V  we will always mean a nonnegative measure that is 

defined on the Borel sets of V  and is not identically zero. We write vS +  
for the translation of a set V⊆S  by a vector .V∈v  

Definition 2.1 ([9], Definition 1, p. 221). A measure µ  is said to be 

transverse to a Borel set ,V⊂S  if the following two conditions hold: 

(i) There exists a compact set V⊂U  for which ( ) .10 <µ< U  

(ii) ( ) 0=+µ vS  for every .V∈v  

Definition 2.2 ([9], Definition 2, p. 222; [1], p. 1579). A Borel set 
V⊂S  is called shy, if there exists a measure transverse to S. More 

generally, a subset of V  is called shy if it is contained in a shy Borel set. 
The complement of a shy set is called a prevalent set. We say that a set is 
Haar ambivalent if it is neither shy nor prevalent. 

Definition 2.3 ([9], p. 226). We say “almost every” element of V  
satisfies some given property, if the subset of V  on which this property 
holds is prevalent. 
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Lemma 2.4 ([9], Fact 3′′, p. 223). The union of a countable collection 
of shy sets is shy. 

Lemma 2.5 ([9], Fact 8, p. 224). If V  is infinite dimensional, all 
compact subsets of V  are shy. 

Definition 2.6 ([9], Definition 6, p. 225). We call a finite-dimensional 
subspace V⊂P  a probe for a set ,V⊂T  if the Lebesgue measure 
supported on P is transverse to a Borel set which contains the 
complement of T. 

Remark 2.7. Notice that a sufficient (but not a necessary) condition 
for T to be prevalent is for it to have a probe. 

One can consult [9] in order to see whether by constructing 
appropriate probes the validity of the following assertions can be 
obtained. 

Example 2.8 ([9], Proposition 1, p. 226). “Almost every” function 

[ ] R→1;0:f  in 1L  satisfies ( ) .0
1
0

≠∫ dxxf  

Example 2.9 ([9], Proposition 2, p. 226). For ,1 ∞≤< p  “almost 

every” sequence ( ) N∈iia  in pA  has the property that ii a∑∞
=1  diverges. 

Example 2.10 ([9], Proposition 4, p. 226). “Almost every” continuous 
function [ ] R→1,0:f  is nowhere differentiable. 

Lemma 2.11 ([11], Lemma 2, p. 58). Let µ  be a Borel probability 

measure defined in a complete separable metric space .V  Then, there 
exists a countable family of compact sets ( ) N∈kkF  in V  such that 

( ) .0\ =µ ∈ kk FNV ∪  

Let NR  and ( )NR  be a vector subspace of the infinite-dimensional 
topological vector space of all real-valued sequences equipped with the 
product topology and a vector space of all eventually zero sequences, 
respectively. 
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Lemma 2.12 ([19], Theorem 1, p.79). There exists a family ( ) R∈ttC  of 

Borel subsets in NR  such that the following four conditions are satisfied: 

(a) ( )
tt CC =+ NR  for .R∈t  

(b) ( ) R∈ttC  is a partition of .NR  

(c) tC  is ambivalent for .R∈t  

(d) Every translate of sC  intersects tC  in a shy set for different 

., R∈ts  

3. Some Well-founded Estimates in the Linear  
One-dimensional Stochastic Model 

Suppose that Θ  is a vector subspace of the infinite-dimensional 

topological vector space .NR  

In the information transmission theory, we consider the linear one-
dimensional stochastic system 

( ) ( ) ( ) ,NNN ∈∈∈ ∆+θ=ξ kkkkkk   (3.1) 

where ( ) Θ∈θ ∈Nkk  is a sequence of useful signals, ( ) N∈∆ kk  is sequence 

of independent identically distributed random variables (the so-called 
generalized “white noise”) defined on some probability space ( )P,, FΩ  

and ( ) N∈ξ kk  is a sequence of transformed signals. Let µ  be a Borel 

probability measure on R  defined by a random variable .1∆  Then the 

power-N  of the measure µ  denoted by Nµ  coincides with the Borel 

probability measure on NR  defined by the generalized “white noise”, i.e., 

( ) ( ( ) ( ) ({ ( ( )) })),&: XPXXX ∈ω∆Ω∈ωω=µ→∈∀ ∈N
NNR kkB   (3.2) 

where ( )NRB  is the Borel algebra-σ  of subsets of .NR  
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In the information transmission theory, a general decision is that the 
Borel probability measure ,λ  defined by the sequence of transformed 

signals ( ) N∈ξ kk  coincides with ( )
0θ

µN  for some Θ∈θ0  provided that 

( ) ( ( ) ( ( ) ( ) ( ) ( ))),
000 XXXX θµ=λ→∈∀→Θ∈θθ∃ NNRB  (3.3) 

where ( ) ( ) ( )00
θ−µ=µ θ XX NN  for ( ).NRB∈X  

Here, we consider a particular case of the above model (3.1) when a 
vector space of useful signals Θ  has the form 

( ){ }.:,, R∈θθθ=Θ "   (3.4) 

For ,R∈θ  a measure N
θµ  defined by 

,"×µ×µ=µ θθθ
N  

where θµ  is a shift-θ  of ( ( ) ( )θ−µ=µµ θ XX.,i.e  for ( )),RB∈X  is 

called the power-N  of the shift-θ  of µ  on .R  It is obvious that  

( )( ).,, "θθθ µ=µ NN  

Using the concepts of the theory of statistical decisions, a triplet 

( ( ) ) R
NNN RR ∈θθµ,, B  is called a statistical structure describing the 

linear one-dimensional stochastic system (3.1). 

Definition 3.1. A family of Borel measurable functions 

RR →n
nT :  ( )N∈n  is called a well-founded estimate of a parameter 

θ  for the family ( ) ,R
N

∈θθµ  if the condition 

({( ) ( ) ( ) }) ,1,,lim&: 1 =θ=∈µ
∞→∈∈θ nnn

xxTxx …N
NN

N Rkkkk  (3.5) 

holds for each .R∈θ  
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Lemma 3.2. Let F be a strictly increasing continuous distribution 
function on R  and µ  be a Borel probability measure on R  defined by F. 

For ,R∈θ  we set ( ) ( ) ( )R∈θ−=θ xxFxF  and denote by θµ  the Borel 

probability measure on R  defined by θF  (obviously, this is an equivalent 

definition of the shift-θ  of µ ). Then a function RR →n
nT :  defined by 

( ) ( ({ } ( ])),0;,,#,, 1
11

1 ∞−−= −− ∩"" nnn xxnFxxT  (3.6) 

for ( ) ( ),,,1 NR ∈∈ nxx n
n…  is a well-founded estimate of a parameter θ  

for the family ( ) .R
N

∈θθµ  

Definition 3.3. Following [10], the family ( ) R
N

∈θθµ  is called strongly 

separated in the usual sense, if there exists a family ( ) R∈θθZ  of Borel 

subsets of NR  such that 

(i) ( ) 1=µ θθ ZN  for ;R∈θ  

(ii) 021 /=θθ ZZ ∩  for all different parameters 1θ  and 2θ  from ;R  

(iii) .N
R R=θ∈θ Z∪  

Definition 3.4. Following [10], an expanded Borel quasi-measurable 
1 function RR →nT :  is called an infinite sample well-founded estimate 

of a parameter θ  for the family ( ) ,R
N

∈θθµ  if the following condition: 

( ) ( ({( ) ( ) (( ) }) )1&: =θ=∈µ→∈θθ∀ ∈∈∈θ N
N

NN
N RR kkkkkk xTxx  

(3.7) 

is fulfilled, where { }.∞±= ∪RR  

                                                      
1A function RR →nT :  is called an expanded Borel quasi-measurable if  

( ) ( )NRB∈− xf 1  for each .R∈x  
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Remark 3.5. The existence of an infinite sample well-founded 

estimate of a parameter θ  for the family ( ) R
N

∈θθµ  implies that the family 

( ) R
N

∈θθµ  is strongly separated in a usual sense. Indeed, if we set 

{( ) ( ) (( ) }θ=∈= ∈∈∈θ N
N

NN R kkkkkk xTxxZ &:  for ,R∈θ  then all the 

conditions of Definition 3.3 will be satisfied.  

By the strong law of large numbers, one can easily obtain the validity 
of the following assertion: 

Lemma 3.6. Let F be a strictly increasing continuous distribution 
function on R  and µ  be the Borel probability measure on R  defined by F. 
Suppose that the first order absolute moment of µ  is finite and the first 

order moment of µ  is equal to zero. For ,R∈θ  we set 
( ) ( ) ( )R∈θ−=θ xxFxF  and denote by θµ  the Borel probability measure 

on R  defined by .θF  Then the estimates j jlim : inf supn n m n mT T≥=  and 
j jlim : sup infn n m n mT T≥=  are infinite sample well-founded estimates of a 

parameter θ  for the family ( ) ,R
N

∈θθµ  where j :nT →NR R  is defined by 

( ( ) ) ( ( ) j ( ( ) ) )1

1
.

n

nx x T x n x−
∈ ∈ ∈

=

∀ ∈ → = ∑N
N N NRk k k kk k k

k
 (3.8) 

Lemma 3.7 ([20], Theorem 4.2, p. 483). Let F be a strictly increasing 
continuous distribution function on R  and µ  be the Borel probability 

measure on R  defined by F. For ,R∈θ  we set ( ) ( ) ( )R∈θ−=θ xxFxF  

and denote by θµ  the Borel probability measure on R  defined by .θF  Then 

the estimates j jlim : inf supn n m n mT T≥=  and j jlim : sup infn n m n mT T≥=   are 

infinite sample well-founded estimates of a parameter θ  for the family 

( ) ,R
N

∈θθµ  where j :nT →NR R  is defined by 

( ( ) ) ( ( ) j ( ( ) )nx x T x∈ ∈ ∈∀ ∈ →k k kk k k
N

N N NR  

( ( { } ( ] ) ) )1 1
1# , , ; 0 .nF n x x− −= − − ∞" ∩   (3.9) 
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Remark 3.8. By Remark 3.5 and Lemmas 3.6-3.7, we deduce that the 
families of powers of shift measures described in the corresponding 
lemmas are strongly separated in the usual sense. 

4. An Application of “Almost Every” Approach to the Study the 
Properties of the Hypothesis Testing of Maximal Reliability 

Let us recall some notions of the theory of statistical decisions. 

Let ( ( ) ) R
NNN RR ∈θθµ,, B  be a statistical structure described the 

linear one-dimensional stochastic system (3.1). 

Definition 4.1. Let a null hypothesis 0H  be defined by ,: 00 θ=θH  

where .R∈θ  A triplet ( ),,, 10 UUT  where 

(i) RRN →:T  is a statistic (equivalently, an expanded Borel quasi-
measurable function), 

(ii) 0, 1010 /== UUUU ∩∪ NR  and ( ),0
NRB∈U  

is called a statistical test (criterion) for acceptance of null hypothesis 

0H  (or equivalently, HT (hypothesis testing)). 

For an infinite sample ,NR∈x  we accept the null hypothesis 0H  if 

( ) 0UxT ∈  and reject it, otherwise. 

T is called test statistic of the criterion ( ).,, 10 UUT  

0U  is called the region of acceptance for the null hypothesis .0H  

1U  is called the region of rejection (equivalently, the critical region) 

for the null hypothesis .0H  

Definition 4.2. A decision obtained by the criterion ( )10 ,, UUT  is 

called an error of type I, if the null hypothesis 0H  has been rejected 

whenever the null hypothesis 0H  was true. 
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Definition 4.3. A decision obtained by the criterion ( )10 ,, UUT  is 

called an error of type II, if the null hypothesis 0H  has been accepted 

whenever null hypothesis 0H  was false. 

Definition 4.4. The value 

({ ( ) }) ,: 01 α=∈µθ HUxTxN   (4.1) 

is called the size (equivalently, the significance level) of the test T. 

Definition 4.5. The value 

({ ( ) }) ,: 10 β=∈µθ HUxTxN   (4.2) 

is called the power of the test T. 

In many cases, it is not possible to reduce values α  and β  

simultaneously. For this reason, we fix the probability α  of an error of 
type I and consider the critical regions 1U  for which the following 

condition: 

({ ( ) }) α≤∈µθ 01: HUxTxN   (4.3) 

holds. Further, among such critical regions, we choose a region ∗
1U  for 

which the error of type II is maximal. 

We will see that for model (3.1), there exists a rich class of statistical 
tests for which .0=β+α  Further, we will try to explain in terms 

“almost every” introduced in Definition 2.3 why the application of some of 
them leads us to confusion provided that there always is a null 
hypothesis which is rejected or accepted for “almost every” infinite 
sample by the corresponding test statistic. 

Example 4.6. Let us consider the linear one-dimensional stochastic 
system (3.1) for which F is a linear standard Gaussian (or Cauchy) 
distribution function on .R  



WHY IS THE NULL HYPOTHESIS REJECTED … 57

For ,R∈θ  we put 

{ ( ) ( ) j ( ( ) ) }: & lim ,nD x x T xθ ∈ ∈ ∈= ∈ = θk k kk k k
N

N N NR   (4.4) 

where the estimate jlim nT  comes from Lemma 3.6 (or Lemma 3.7). By 

Lemma 3.6 (or Lemma 3.7), we know that 

( ) .1=µ θθ DN  

On the other hand, by Lemma 2.11, we know that for each ,Θ∈θ  there 

exists a countable family of compact sets ( ( ) ) N∈
θ
kkF  such that 

( ( ) ) .0\ =µ θ
∈θ kk FN

NN R ∪  (4.5) 

Finally, for ,Θ∈θ  we put 

( ).θ
∈θθ = kk FDC N∪∩   (4.6) 

It is obvious that ( ) Θ∈θθC  is a family of pairwise disjoint sets-σF  

such that 

( ) .1=µ θθ CN   (4.7) 

We put (( ) ) θ=∈
◊

NkkxT  if ( ) θ∈ ∈ Cx Nkk  and (( ) ) +∞=∈
◊

NkkxT  

otherwise, where ( ) Θ∈θθC  comes from Example 4.6. 

Test 4.7. (The decision rule for a null hypothesis ( )R∈θθ=θ= 000H   

Null hypothesis: ;: 00 θ=θH  

Alternative hypothesis: ;: 01 θ≠θH  

Test statistic: ;◊= TT  

Acceptance region for { };: 000 θ=UH  

Alternative critical region: { }.\ 01 θ= RU  
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Remark 4.8. The sum of errors of I and II types for Tests 4.7 is equal 
to zero (equivalently, Tests 4.7 is hypothesis testing of maximal 
reliability). Indeed, 

({ ( ) }) ({ ( ) { }} ( ) ,0\\:: 000 001 =µ=θ∈µ=∈µ θθ
◊

θ
◊

θ DxTxHUxTx NNNN RR  

and 

({ ( ) }) ({ ( ) }) ( ) ( ).0:: 0010 0 θ≠θ=µ=θ=µ=∈µ θθ
◊

θ
◊

θ DxTxHUxTx NNN  

Test 4.9. (The decision rule for a countable competing hypotheses 
{ }RN ∈θ∈θ=θ iii iH &: ) 

i-th Hypothesis: ;: iiH θ=θ  

Test statistic: ;◊= TT  

Acceptance region for { };: iii UH θ=  

Alternative critical region: { }.\ iiV θ= ∈NR ∪  

Remark 4.10. The sum of errors of I and II types for Tests 4.9 is 
equal to zero (equivalently, Tests 4.9 is a hypothesis testing of maximal 
reliability). Indeed, 

({ ( ) }) ({ ( ) { }}) ( ) ,0\\:: =µ=θ∈µ=∈µ θ∈θ∈
◊

θ
◊

θ ii
DxTxHVxTx iiii N

NN
N

NN RR ∪∪  

({ ( ) }) ({ ( ) } ( ) ( ),0:: jiDxTxHUxTx ijj iji ≠=µ=θ=µ=∈µ θθ
◊

θ
◊

θ
NNN  

and 

({ ( ) }) ( ) ( { }).\0: 0 iiiii DVUxTx θ∈θ=µ=∈µ ∈θ∈θ∈
◊

θ NN
N

N
N R ∪∪∪  

Theorem 4.11. For “almost every” infinite sample, a null hypothesis 
is rejected by Test 4.7. 
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Proof. We have to show that a set of all infinite samples for which a 
Null Hypothesis is rejected by Test 4.7 is prevalence. Since the set 0θC  is 

covered by the union of the countable family of compact sets ( ( ) ) ,0 N∈
θ

kkF  

by Lemmas 2.4 and 2.5, we deduce that the Borel set 0θC  as a subset of 

the Borel shy set ( )0θ
∈ kk FN∪  (see Definition 2.1) is also shy. The latter 

relation implies that 0\ θCNR  is prevalent because it is a complement of 

the shy set .0θC  This ends the proof of the theorem.  
 

Theorem 4.12. For “almost every” infinite sample, all hypotheses iH  

( )N∈i  are simultaneously rejected by Test 4.9. 

Proof. We have to show that a set of all infinite samples for which all 
hypothesis ( )N∈iHi  simultaneously are rejected by Test 4.9 is 

prevalence. Since for ,N∈i  the set iCθ  is covered by the union of the 

countable family of compact sets ( ( ) ) ,N∈
θ
kk

iF  by virtue of Lemmas 2.4-2.5, 

we deduce that a set iCθ  as a subset of the Borel shy set ( )iF θ
∈ kk N∪  (see 

Definition 2.2) is also shy. By Lemma 2.5, we know that iCi θ∈N∪  is a shy 

set, which implies that iCi θ∈N
NR ∪\  as a complement of the shy set 

iCi θ∈N∪  is prevalent. This ends the proof of the theorem.  
 

Remark 4.13. An infinite sample average R→∞ SX :  is defined by 

(( ) ) ,lim 1
n

x
xX

n

n

kk
kk

∑ =
∞→∈∞ =N   (4.8) 

for ( ) ,Sx ∈∈Nkk  where 

{( ) ( ) &: N
NN R∈= ∈∈ kkkk xxS  there exists a finite limit }.lim 1

n
xn

n
kk∑ =

∞→
 

(4.9) 
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Notice that under condition of Lemma 3.6, we have the representation of 
S as the union of the family of pairwise disjoint Borel subsets ( ) ,R∈θθS  

where 

{( ) ) ( ) },lim&: 1 θ=∈=
∑ =

∞→∈∈θ n
x

xxS

n

n

kk
kkkk

N
NN R  

for ,R∈θ  and 

( ) ( ( ) ).1=µ→∈θθ∀ θθ SNR  

Lemma 4.14. S is a Borel shy set. 

Proof. It is obvious that S is a vector subspace of .NR  Indeed, if 

( ) N∈kkx  and ( ) N∈kky  are elements of S, then for ,, R∈βα  we get 

n
y

n
x

n
yx

n

n

n

n

n

n

kkkkkkk
β

+
α

=
β+α ∑∑∑ =

∞→
=

∞→
=

∞→
111 limlimlim  

,limlim 11
n

y
n

x
n

n

n

n

kkkk ∑∑ =
∞→

=
∞→

β+α=  (4.10) 

which means that S is a vector subspace of .NR  

We have to show that S is a Borel subset of .NR  

For ,N∈i  we denote by irP  the i-th projection on NR  defined by 

(( ) ) ,ii xxrP =∈Nkk   (4.11) 

for ( ) .N
N R∈∈kkx  
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We put n
rP

S i
n
i

n
∑ == 1  for .N∈n  Then, on the one hand, the set of 

all infinite samples NR∈x  for which there exists a finite limit     
( )xSnn ∞→lim  coincides with S. On the other hand, taking into account 

that RRN →:nS  is a continuous function for N∈n  and the equality 

{ ( ) ( ) }pxSxSxxS qmqmnqnp
1&:

111
≤−∈= +

∞

=

∞

=

∞

=

∞

=
NR∩∩∪∩  

(4.12) 

holds, we claim that S is Borel subset of .NR  

We put ( ).,3,2,1 "=v  Let us show that v spans a line L such that 

every translation of L meets S at most one point; in particular, L is a 
probe for the complement of S. Indeed, assume the contrary. Then, there 

will be an element ( ) N
N R∈∈kkz  and two different parameters R∈21, tt  

such that ( ) ( ) Stz ∈+∈ ",3,2,11Nkk  and ( ) ( ,3,2,12tz +∈Nkk  ) .S∈"  

Since S is a vector space we deduce that ( ) ( ) ∈− ",3,2,112 tt  .S  Using 

the same argument, we claim that ( ) S∈",3,2,1  because ,012 ≠− tt  

but the latter relation is false because 

.2
1limlim 1 +∞=+=

∞→
=

∞→

∑ n
n n

n

n

k
k  (4.13) 

This ends the proof of the lemma.  
 

We set (( ) ) (( ) )NN ∈∞∈
∗ = kkkk xXxT  if ( ) ,\ 0SSx ∈∈Nkk  and 

(( ) ) 0=∈
∗

NkkxT  otherwise. 

Then under conditions of Lemma 3.6, ∗T  is an infinite sample well-

founded estimates of a parameter θ  for the family ( ) .R
N

∈θθµ  
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We consider the following: 

Test 4.15. (The decision rule for all competing hypotheses { :: iHi =θ  

}R∈i ) 

i-th Hypothesis: ;: iHi =θ  

Test statistic: ;∗= TT  

Acceptance region for { }iUH ii =:  for ;R∈i  

Alternative critical region: .0/=V  

Remark 4.16. The sum of errors of I and II types for Tests 4.15 is 
equal to zero (equivalently, Tests 4.15 is a hypothesis testing of maximal 
reliability). Indeed, 

({ ( ) }) ({( ) ( )}) ( ) ,0: 1 =µ=µ=∈µ −∗∗
θ jiiij SjTHUxTx NNN  

for ( )., R∈≠ jiji  

Theorem 4.17. For “almost every” infinite sample, a null hypothesis 
0:0 =θH  is accepted by Test 4.15. 

Proof. On the one hand, following Lemma 4.14, S is shy. On the 
other hand, the set of all infinite samples for which the 0H  hypothesis is 

accepted coincides with a set ( ) ,\ 0SS ∪NR  which is also a prevalence     

(notice that 0S  as well S is shy). This ends the proof of the theorem.  
 

The next example of a hypothesis testing employs the result of 
Lemma 2.12 and the axiom of global choice [7]. 

Let τ  be an operator of global choice. Let denote by ( )Rb  a set of all 
one-to-one mappings of R  onto itself. We set ( ( ( ) ) ( ) ) θθθ = SSCD b ∪\Rτ  

for ,R∈θ  where ( ) R∈ttC  comes from Lemma 2.12. Then ( ) R∈θθD  will be 

Borel partition of NR  such that θD  is neither prevalent nor shy for 
R∈θ  and every translate of 1θD  intersects 2θD  in a shy set for 

different ., 21 R∈θθ  
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We put (( ) ) θ=∈NkkxT   if ( ) .θ∈ ∈ Dx Nkk  

Under conditions of Lemma 3.6, T  is an infinite sample well-

founded estimate of a parameter θ  for the family ( ) .R
N

∈θθµ  

Test 4.18. (The decision rule for all competing hypotheses 
{ :: iHi =θ  }R∈i ) 

i-th Hypothesis: ;: iHi =θ  

Test statistic: ;TT =  

Acceptance region for { }iUH ii =:  for ;R∈i  

Alternative critical region: .0/=V  

Remark 4.19. The sum of errors of I and II types for Tests 4.18 is 
equal to zero (equivalently, Tests 4.18 is a hypothesis testing of maximal 
reliability). 

Theorem 4.20. The following assertions are valid: 

(i) Unlike Test 4.7, there is no a null hypothesis which is rejected for 
“almost every” infinite sample by the Test 4.18; 

(ii) Unlike Test 4.9, there is no a countable family of competing 
hypotheses { }NR ∈∈=θ kkkk ,,: iiH  such that for “almost every” 

infinite sample all null hypotheses are simultaneously rejected by Test 
4.18; 

(iii) Unlike Test 4.15, there is no a null hypothesis which is accepted 
for “almost every” infinite sample by the Test 4.18. 

Proof: Proof of the item (i). Let consider an arbitrary null 
hypothesis ( ).:0 R∈=θ= iiH  The set of infinite samples for which 0H  

is rejected coincides with the set .\ iDNR  By Lemma 2.12, we know that 
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iC  is not shy. Hence the set ( ) iii SSCD ∪\=  also is non-shy because S 

and iS  are Borel shy sets (see Lemma 4.14). The latter relation means 

that complement of iD  is not prevalence and the validity of the item (i) is 

proved. 

Proof of the item (ii). A set of all infinite samples for which all 
competing null hypotheses { }N∈=θ kkk iH :  are simultaneously 

rejected coincides with the set .\
kk iDN

NR ∈∪  Using the same argument 

used in the proof of the item (i), we claim that 
kk iDN

NR ∈∪\  is not 

prevalence. 

Proof of the item (iii). Let consider an arbitrary null hypothesis 
( ).:0 R∈=θ iiH  The set of infinite samples for which 0H  is accepted 

coincides with the set .iD  By Lemma 2.12, we know that iC  is not 

prevalence. Hence the set ( ) iii SSCD ∪\=  also is not prevalence 

because S and iS  are Borel shy sets (see Lemma 4.14). 
 

We put 

( ( ) ) j ( ( ) ) j ( ( ) )lim : inf sup ,n mn m n
T x T x T x∈ ∈ ∈

≥
= =k k kk k kN N N  

for ( ) ,N
N R∈∈kkx  where (( ) ) .1

n
x

xT

n

n
kk

kk
∑ =

∈ =N  

Under conditions of Lemma 3.6, we consider the following tests: 

Test 4.21. (The decision rule for a null hypothesis ( )R∈θθ=θ 000 :H ) 

Null hypothesis: ;: 00 θ=θH  

Alternative hypothesis: ;: 01 θ≠θH  

Test statistic: jlim ;nT T=  
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Acceptance region for { };: 000 θ=UH  

Alternative critical region: { }.\ 01 θ= RU  

Test 4.22. (The decision rule for a countable competing hypotheses 
{ }RN ∈θ∈θ=θ iii iH &: ) 

i-th Hypothesis: ;: iiH θ=θ  

Test statistic: jlim ;nT T=  

Acceptance region for { };: iii UH θ=  

Alternative critical region: { }.\ iiV θ= ∈NR ∪  

Test 4.23. (The decision rule for all competing hypotheses { :: iHi =θ  

}R∈i ) 

i-th Hypothesis: ;: iHi =θ  

Test statistic: jlim ;nT T=  

Acceptance region for { }iUH ii =:  for .R∈i  

Alternative critical region: { }.±∞=V  

Remark 4.24. Notice that Tests 4.21-4.23 are statistical tests of 
maximal reliability. If we consider a set D of all infinite samples  

( ) N
N R∈∈kkx  for which j ( ( ) )lim ,nT x ∈−∞ < < +∞k k N  we observe that D 

is a vector subspace of .NR  By using the scheme of the proof of Lemma 

4.14, we can easily prove that D is a Borel shy set in .NR  

Using Remark 4.24, one can get the validity of the following 
assertions: 

Theorem 4.25. For “almost every” infinite sample, a null hypothesis 
( )R∈θθ=θ 000 :H  is rejected by Test 4.21. 
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Theorem 4.26. For “almost every” infinite sample, all hypotheses iH  

( )N∈i  are simultaneously rejected by Test 4.22. 

Theorem 4.27. For “almost every” infinite sample, all hypotheses iH   

( )R∈i  are simultaneously rejected by Test 4.23. 

5. Conclusion 

Suppose that RT →NR:  is an infinite sample well-founded 
estimate of a useful signal in the linear one-dimensional stochastic model 
(3.1). Notice that each hypothesis testing with such a test statistic is an 
infinite sample hypothesis testing of maximal reliability. 

Main results of Section 4 motivate the following definition: 

Definition 5.1. The estimate T is called subjective, if there is a null 
hypothesis which is accepted or rejected for “almost every” infinite 
sample by T under the assumption (3.3). Otherwise, the estimate T is 
called objective. 

Definition 5.2. An infinite sample well-founded estimate 

RT →NR:  is called strong objective if under the assumption (3.3) hold 
the following two conditions: 

(i) ( ) ( ( )θ→∈θθ∀ −1TR  is Haar ambivalent); 

(ii) ( ) ( →∈θθθθ∀ R2121 ,,  there exists an isometric (with respect to 

Tychonov metric) transformation ( )21, θθA  of ∞R  such that ( )( ( ))1
1

, 21 θ−
θθ TA  

( )2
1 θ∆ −T  is shy). 

Notice that for objective infinite sample well-founded estimates the 
condition (i) of the Definition 5.2 authomatically holds. 
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Following Definition 5.1, the class of all infinite sample well-founded 
estimates of a useful signal in the linear one-dimensional stochastic 
model (3.1) can be divided into two pairwise disjoint non-empty 
subclasses: subjective and objective infinite sample well-founded 

estimates. For example, T (considered in Tests 4.7 and 4.9), ∗T  

(considered in Test 4.15), and jlim nT  (considered in Tests 4.21-4.23) are 

subjective infinite sample well-founded estimates. It can be shown that 

the test statistic T  (considered in Test 4.18) is an objective infinite 
sample well-founded estimate. 

Below we give an example of a strong objective infinite sample well-
founded estimate in our model. 

Example 5.3. Let J be an arbitrary subset of .N  We set 

{( ) }.\for0&for0: JixJixxA iiiiJ NN ∈<∈≥= ∈  

Then JA  is a Borel subset in ,NR  which is a Haar ambivalent. 

Let denote by ( )NP  power set of the set of all natural numbers and 

( )NR P→:H  a bijection. We set ( ( ) ) θθθ = SSAD H ∪\  for ,R∈θ  

where S and ( ) R∈θθS  comes from Remark 4. 13. Then ( ) R∈θθD  will be 

Borel partition of NR  such that θD  is a Haar ambivalent for R∈θ  and 

for all ,, 21 R∈θθ  there exists an isometric (w.r.t. Tychonov metric) 

transformation ( )21, θθA  of the ∞R  such that ( )( ) 2121, θθθθ ∆DDA  is shy. 

We can define ( )21, θθA  as follows: For ( ) ,∞
∈ ∈ RNkkx  we put 

( )(( ) ) ( ) ,21, NN ∈∈θθ = kkkk yxA  where kk xy −=  if ( ) ( )21 θ∆θ∈ HHk  and 

kk xy =  otherwise. We put (( ) ) θ=∈NkkxT D  if ( ) N∈kkx  .θ∈ D  
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Now it is not hard to show that under conditions of Lemma 3.6, DT  is 
a strong objective infinite sample well-founded estimate of a parameter θ  

for the family ( ) .R
N

∈θθµ  

If we use in the statistical decision theory subjective well-founded 
estimates, then it will be natural to wait that practically all null 
hypotheses will be rejected for “almost every” infinite sample. The latter 
relation is consistent with Jum Nunnally conjecture [17] asserted that 
“… in psychology, practically all null hypotheses are claimed to be false 
for sufficiently large samples · · · ”, and Jacob Cohen assertion [5] that “it 
is usually nonsensical to perform an experiment with the sole aim of 
rejecting the null hypothesis”. The meaning of the fact that Null 
Hypothesis was rejected for “almost every” infinite sample by some 
Hypothesis Testing of maximal reliability can be explained by the 
phenomena that as usual only subjective infinite sample well-found 
estimates were under consideration in the theory of statistical decisions. 

Notice that an application of the objective well-founded estimate in 
the same model shows us that above mentioned conjectures of Jum 
Nunnally [17] and Jacob Cohen [5] fail. It seems that the reduction of a 
big divergence between the theory of statistical decisions and results of 
statistical tests for sufficiently large samples directly depends on a choice 
of a reasonable element in the class of all objective infinite sample well-
founded estimates. 
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